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1. Introduction 

In today’s mutual fund industry, there exist thousands of funds that cater to different investors 

through their management style and other attributes. In incomplete markets, as investors can 

disagree about the attractiveness of funds, such catering might be worthwhile in leading the funds 

to find their right clientele, i.e. the class of investors to whom they are the most valuable.  

Some recent research examines the impact of investor disagreement and heterogeneity on 

mutual fund performance evaluation. Studying the issue generally, Ahn, Cao and Chrétien (2009) 

and Ferson and Lin (2013) find that taking into account heterogeneous preferences do not rule out 

large valuation disagreement. In particular, Ferson and Lin (2013) argue that such disagreement 

can be similar in importance to the widely documented effects of the benchmark choice problem 

and the statistical imprecision in estimates of alphas. Some studies instead concentrate more 

specifically on identifying specific clienteles. Bailey, Kumar and Ng (2011) document that 

behavioral bias is a factor of investor heterogeneity in the mutual fund industry. Del Guercio and 

Reuter (2013) find that the retail mutual fund market is formed from two broad clienteles that 

value funds differently: self-directed investors and investors having brokers helping them in their 

investment decisions. In a literature review, Ferson (2010) emphasizes that measuring 

performance from the point of view of different clienteles is a challenge for future research.  

Despite the important contributions from this literature on establishing the importance of 

investor disagreement and heterogeneity, it has not focus on the valuation that can be the most 

important for mutual funds, the one from their potentially best clientele. A positive evaluation 

from such a targeted clientele could not only establish that some investors would want to buy the 

funds (Chen and Knez (1996) and Ferson and Lin (2013)), but could also justify the continued 

popularity of mutual funds, termed a “puzzle” by Gruber (1996), given the large number of 

studies documenting their negative value added (see Fama and French (2010) and Barras, Scaillet 
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and Wermers (2010) for recent examples). Put differently, focusing on the best clientele could 

lead to a perspective on mutual funds different from the traditional look based on the implied 

representative investor from common asset pricing models. 

 The goal of this paper is to develop and implement a performance evaluation measure that 

considers the potentially best clientele of a mutual fund. For our purpose, this clientele is defined 

as the class of investors the most favorable to a fund in the sense that it values the fund at an 

upper performance bound in a setup where markets are incomplete. Our “best clientele 

performance measure” thus not only considers investor disagreement, but also focuses on the 

most worthy clientele that a mutual fund could target.  

We develop this measure by combining the asset pricing bound literature with the 

stochastic discount factor (SDF) performance evaluation approach first proposed by Glosten and 

Jagannathan (1994) and Chen and Knez (1996). In a complete market, there is a unique SDF for 

asset valuation. Subsequently, there is a unique price for each asset. However, in an incomplete 

market, the uniqueness of the SDF is no longer guaranteed. A set of SDFs is then generally 

admissible, allowing for several prices for each asset. Using the insight of Hansen and 

Jagannathan (1991) on the correspondence between the SDF volatility and the Sharpe ratio, 

Cochrane and Saá-Requejo (2000) propose asset pricing bounds in incomplete market based on a 

maximum SDF volatility in order to rule out investment opportunities with unreasonably high 

Sharpe ratio, termed “good-deals”. 

While the no good-deal bounds approach was developed for pricing derivative assets, this 

paper is the first to adapt it to the performance evaluation of mutual funds. Even though other 

restrictions exist, we argue that the no good-deal restriction is particularly well suited for 

performance evaluation. The Sharpe ratio has a long history in performance evaluation and is 

widely used in practice. The literature, including Ross (1976), MacKinlay (1995) and Cochrane 
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and Saá-Requejo (2000), has also established some useful guidance on reasonable choice for the 

maximum Sharpe ratio that specifies the restriction.  

In addition to the no good-deal restriction, we impose another restriction that is 

particularly meaningful in the mutual fund performance context: the law of one price (LOP) 

condition (Hansen and Jagannathan (1991)). The LOP condition implies that mutual fund 

investors give zero value to passive portfolios. As argued by Chen and Knez (1996) and Ahn, 

Cao and Chrétien (2009), imposing this condition can resolve the widely documented benchmark 

choice or “bad model” problem (see Roll (1978), Dybvig and Ross (1985a, b), Green (1986), 

Lehmann and Modest (1987), among others). In particular, Chen and Knez (1996) show that this 

condition is the most important in the minimum set of requirements for the admissibility of a 

performance measure. 

Taken together, the LOP condition and the no good-deal condition lead to our best 

clientele performance evaluation approach. Specifically, the best clientele performance value or 

alpha is defined as the upper performance bound obtained when the set of SDFs for mutual fund 

investors is assumed to respect both conditions. Cochrane and Saá-Requejo (2000) show not only 

that economically meaningful bounds can be obtained in such a setup, but also that a closed-form 

solution is available for the bounds, which facilitates and accelerates its implementation when 

evaluating a large number of mutual funds. 

Using the generalized method of moment of Hansen (1982), we estimate the best clientele 

SDF alphas with monthly returns of 2786 actively managed U.S. open-end equity mutual funds 

from January 1984 to December 2012. Our main empirical results rely on a set of passive 

portfolios based on ten industry portfolios. They assume that the maximum Sharpe ratio 

(specifying the no good-deal restriction) considers investment opportunities in addition to the 
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ones from the passive portfolios equivalent to either half the Sharpe ratio of the market index or 

its full value.  

Empirically, we find that considering investor disagreement and focusing on the 

potentially best clientele leads to generally positive performance for mutual funds. For example, 

when adding opportunities equivalent to half the market Sharpe ratio, the mean monthly best 

clientele performance alpha is equal to 0.23%. Comparatively, the mean alpha when 

disagreement is ruled out is -0.18%, a value similar to the findings from traditional measures that 

consider the point of view of a representative investor. Accordingly, the proportions of positive 

and significantly positive alphas increase when allowing for more disagreement, going from 20% 

to 78% for positive alphas and from 1% to 24% for significantly positive alphas. Increasing 

further the maximum Sharpe ratio improves even more the performance for the mutual funds.  

These results are robust to the use of different sets of passive portfolios and various 

choices of maximum Sharpe ratio. In particular, we show that augmenting monthly Sharpe ratio 

opportunities by only 0.04 (about a third on the market index Sharpe ratio) is sufficient for the 

best clientele to give a nonnegative performance to mutual funds on average. A conditional 

version of the best clientele performance approach and adjustments for false discoveries also lead 

to the same conclusion.  

Overall, our best clientele alpha results suggest that there is a clientele that would want to 

buy a majority of the mutual funds, consistent with the real-life continued investments of investors 

in mutual funds. As Ferson and Lin (2013), they support an economically important divergence 

in performance evaluation between clienteles.  

The remainder of this paper is organized as follows. Section 2 develops the best clientele 

performance measure. Section 3 presents our methodology for estimating the performance values 
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and summarizing the results. Section 4 describes the mutual fund data and the passive portfolio 

returns. Section 5 presents and interprets our empirical results. Finally, section 6 concludes.  

2. Performance Measure for the Best Potential Clientele 

2.1.  Basic Performance Setup 

Our approach starts by measuring the performance, or alpha, with the stochastic discount factor 

(SDF) approach such that:  

 

        [           ]   , 

 

where      is the SDF of an investor interested in valuing the mutual fund with gross return 

         and the expectation operator   [ ] is understood to be conditional on the investor’s or 

public information set. Taking the unconditional expectation on both sides, and dropping time 

subscripts except when needed to avoid ambiguity, the expected alpha is given by: 

 

     [     ]     

 

 Glosten and Jagannathan (1994) and Chen and Knez (1996) are the first to propose SDF 

alphas for performance evaluation. As explained by Cochrane (2001), the SDF approach does not 

require any assumptions about complete markets, utility functions and aggregation. The existence 

of the SDF requires only that the law of one price is not violated, so that two assets with the same 

payoffs have the same price. In the context of performance evaluation, Ferson (2010) argues that 

the SDF approach is general enough to properly account for heterogeneous investors and 

differentially-informed managers. In contrast, for traditional regression-based alpha, a positive 



6 

 

(negative) value does not necessarily imply buying (selling) the fund, and manager with superior 

information does not necessarily generate a positive value. Ferson (2010, p. 227) thus concludes 

that “the SDF alpha seems to be on the most solid theoretical footing, and should probably get 

more attention than it has in the literature”.  

 In this setup, the SDF is a scalar random variable used by the investor to risk adjusted 

the mutual fund payoffs per dollar invested by “discounting” them. It thus captures the effects of 

both time value of money and risk. Under general conditions in intertemporal asset pricing, the 

SDF can also be interpreted as the investor’s intertemporal marginal rate of substitution, the 

relevant asset pricing representation of the investor’s marginal preferences. In this sense, given 

the investor’s “marginal preferences”, his expected alpha for the fund can be found.   

 Unfortunately, the investor’s SDF is not observable. Hence the literature typically uses 

the marginal preferences from a representative investor obtained through economic assumptions 

and equilibrium conditions. For example, the CAPM supposes that the SDF is a linear function of 

the market return. The main advantage of such a choice is that it provides a unique performance 

evaluation that can be relevant for all investors. However, it rules out investor disagreement that 

occurs when one client views the performance of a fund differently from another client (see 

Ferson and Lin (2013)). Furthermore, it exposes the results to the benchmark problem choice, as 

the selected performance model does not necessarily price correctly passive portfolios (see Chen 

and Knez (1996), Fama (1998) and Ahn, Cao and Chrétien (2009)).    

 Instead, in this paper, we impose an economically relevant structure on the set of SDFs 

of all investors in order to obtain a restricted set useful to identify the most favorable 

performance. Let   represents this restricted set. Under the assumption that this set is 

constrained enough to be close and convex, Chen and Knez (1996) and Ahn, Chrétien and Cao 

(2009) demonstrate that it is possible to find an upper bound on the performance of a fund:  



7 

 

 

 ̅          [     ]   ,  

 

where  ̅   represents the upper bound on the expected alpha, the highest average performance 

value that can be found from the heterogeneous investors considered in  .  

 By considering a set of SDFs, as opposed to selecting a unique SDF, our setup results in 

a finite range of performance values (see Chen and Knez (1996) and Ahn, Chrétien and Cao 

(2009)). Hence, it allows for the investor disagreement that can occur in incomplete market. As 

argued by Chen and Knez (1996, p. 529), “given that mutual funds are set up to satisfy different 

clienteles, such an evaluation outcome may not be unrealistic”. Empirically, the results of Ferson 

and Lin (2013) suggest that in fact investor disagreement is economically important.  

 While, for example, a lower performance bound could be found, we focus on the upper 

bound as it can be interpreted as the performance from the class of investors the most favorable to 

the mutual fund (in a valuation sense). It is thus possible to evaluate whether mutual funds add 

value from the perspective of their potentially best clientele. In particular, Chen and Knez (1996) 

and Ferson and Lin (2013) show that if this value is positive, there exists some investor that would 

want to buy the fund, with an optimal investment proportional to the alpha.  

2.2. Restricting the Stochastic Discount Factors 

One key to our approach is restricting the set   of SDFs in an economically meaningful way. We 

impose two conditions that the SDF of mutual fund investors should meet: the law of one price 

and the no good-deal condition.  

 The first condition is the law of one price condition, as discussed extensively by Hansen 

and Jagannathan (1991): the SDFs used for our performance measurement should price correctly 

passive portfolios or basis assets:  
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 [    ]     ,  

 

where    is a vector of returns on   passive portfolios and   is a     unit vector. It is 

plausible to assume that mutual fund investors would agree that passively-managed portfolios 

should have zero average alphas.  

 The main benefit of imposing the law of one price condition is to alleviate the previously 

mentioned benchmark choice problem. Chen and Knez (1996) argue that this condition is the 

most important in the minimum set of requirements for the admissibility of a performance 

measure. Yet the literature has established that commonly-used performance measures often do 

not price correctly passive portfolios and thus suffer from the Fama (1998) “bad model” problem 

(see also Roll (1978), Green (1986), Chen and Knez (1996) and Ahn, Cao and Chrétien (2009)).  

 To see how the law of one price condition restricts the set   of SDFs for the mutual 

fund investors, we can refer to the literature on SDF bounds. Hansen and Jagannathan (1991) 

provide the best-known bound by showing that the law of one price condition translates into a 

minimum standard deviation for SDFs that is related to the highest Sharpe ratio attainable in the 

passive portfolios. Other restrictions on SDFs that can be developed from the law of one price 

condition include the bounds of Snow (1991) on selected higher SDF moments, the bound of 

Bansal and Lehmann (1997) on the expectation of the log SDF, the bound of Chrétien (2012) on 

the SDF autocorrelation, as well as numerous tighter SDF volatility bounds that consider 

conditioning information (Gallant, Hansen and Tauchen (1990), Bekaert and Liu (2004) and 

Ferson and Siegel (2003)), the implications of economic factors (Balduzzi and Kallal (1997)) and 

the role of state variables (Kan and Zhou (2006).  
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 While the law of one price provides important restrictions on the set of SDFs, it is not 

sufficient to make it close and convex, and thus would allow for an infinite range of performance 

values, as discussed in Chen and Knez (1996). The second condition we impose is the no good-

deal condition of Cochrane and Saá-Requejo (2000): the SDFs used for performance 

measurement should not permit investment opportunities with Sharpe ratios that are too high:  

 

 [     ]

 [     ]
  ̅  

 

where    is the return on any asset j,  ̅ is the maximum Sharpe ratio allowable and    is the risk-

free rate. We thus stipulate that mutual fund investors would find it implausible that allowable 

investment opportunities could provide Sharpe ratios that are too high, making them too-good 

deals.  

  Reasons why too-high Sharpe ratios should be ruled out are discussed by Ross (1976), 

MacKinlay (1995), Cochrane and Saá-Requejo (2000) and Ross (2005), among others. Ross 

(1976) argues that Sharpe ratios that are too high (more than twice the market Sharpe ratio) are 

unreasonable from the perspective of the CAPM, and thus rules them out in studying deviations 

from the arbitrage pricing theory. In the same spirit, in developing a specification test for 

multifactor models, Mackinlay (1995) uses a bound on the maximum Sharpe ratio, arguing that 

high ratios are unlikely from the perspective of risk-based models. Cochrane and Saá-Requejo 

(2000), referring to the initial justification of the Sharpe ratio, argue that implausibly high Sharpe 

ratio opportunities should be rapidly exploited by investors. Unless there are limits to exploiting 

them, their presence would imply implausibly high investor risk aversion. But risk aversion 

should not exceed a certain limit, because the market risk premium would then tend to infinity. A 
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similar argument is formalized in Ross (2005), who concludes that the highest expected Sharpe 

ratio should not exceed five times the Sharpe ratio of the market.  

 By extension of the analysis of Hansen and Jagannathan (1991), Cochrane and Saá-

Requejo (2000) demonstrate that the no good-deal condition restricts the set   of SDFs for the 

mutual fund investors by limiting its second moment:  

 

 [  ]   
(   ̅ )

  
    

 

As shown by Cochrane and Saá-Requejo (2000), this restriction, along with the law of one price 

condition, makes the set of SDFs close and convex, and thus allows the existence of price 

bounds.  

 There exist other restrictions that could be imposed on SDFs to result in price bounds. 

Hansen and Jagannathan (1991) discuss the no arbitrage condition that excludes non-positive 

SDFs by ruling out arbitrage opportunities. They show that it restricts further the set of SDFs by 

increasing the SDF volatility bound. Chen and Knez (1996) demonstrate that it is sufficient to 

obtain a finite range of performance values, and Ahn, Cao and Chrétien (2009) study no arbitrage 

performance evaluation bounds for mutual funds.  As an alternative, Bernardo and Ledoit (2000) 

introduce a maximum gain-loss ratio condition that rules out approximate arbitrage opportunities. 

This ratio measures the attractiveness of opportunities by dividing the expected positive payoff 

by the absolute value of the expected negative payoff. They argue that it provides a better 

measure of the attractiveness of opportunities than the Sharpe ratio when returns are not normally 

distributed. They further show that the condition leads to a restriction on the minimum and 

maximum SDF values. 
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 In this paper, we select the no good-deal condition over the no arbitrage condition or the 

maximum gain-loss ratio condition for the following reasons. First, since being introduced by 

Sharpe (1966), the Sharpe ratio has a long history of relevancy in performance evaluation. Due to 

its simplicity and great intuitive appeal, the Sharpe ratio is a commonly used measure of 

performance evaluation, both in practice and in academic studies. Second, the literature offers 

some guidance on the choice of maximum Sharpe ratio. In contrast, there is little guidance for the 

maximum gain-loss ratio, and there are often not enough restrictions impose by the no arbitrage 

condition (so that no arbitrage bounds typically remain too wide). Third, the Sharpe ratio captures 

approximate arbitrage opportunities as well as the gain-loss ratio when returns are normally 

distributed, which is reasonable for our sample of monthly equity mutual fund returns. Fourth, the 

no good-deal framework of Cochrane and Saá-Requejo (2000) offers a closed-form solution for 

the performance bounds. This solution facilitates and accelerates its implementation in 

comparison to numerical-only solutions obtained when imposing the no arbitrage condition or the 

maximum gain-loss ratio condition. This advantage should not be neglected given that our large-

scale empirical investigation considers thousands of mutual funds.  

2.3. Best Clientele Performance Measure 

Considering our basic performance setup and our restrictions on the set of SDFs, the upper bound 

on performance evaluation can be found by solving the following problem:  

 

 ̅      
   

 [     ]      

subject to  [    ]   ,  [  ]   
(   ̅ )

  
 . 

 

Cochrane and Saá-Requejo (2000) show that this problem has the following solution:  
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 ̅    [ ̅   ]     

with:  

 ̅        

        

            

where: 

      [     
 ]   

    [      
 ]  [     

 ]    

  √
(
(   ̅ )

  
   [   ])

 [  ]
  

 

 We call the solution  ̅   the “best clientele performance evaluation or alpha” to refer to 

our earlier discussion that it indicates whether mutual funds add value from the perspective of 

their potentially best clientele, the class of investors the most favorable to the mutual fund. 

Similarly,  ̅ represents the “best clientele SDF”. In this solution,    is the SDF identified by 

Hansen and Jagannathan (1991) as having the minimum volatility under the law of one price 

condition. It is a linear function of the passive portfolio returns   . The error term   represents 

the difference between the mutual fund return     and the best “hedging” or “replicating” payoff 

     that can be obtained from the passive portfolio returns. Hence,   is the part of the mutual 

fund return that is not spanned by the passive portfolio returns. Finally,   is the parameter that 

accounts for the no good-deal restriction and is a function of the maximum Sharpe ratio  ̅.   

 We can further understand economically the solution by rewriting it as follow:  
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 ̅    [     ]       [  ]  

 

This equation shows that the best clientele alpha can be decomposed into two parts. The first part, 

 [     ]   , is the law of one price (LOP) performance value developed by Chen and Knez 

(1996), based on the minimum-volatility SDF. Similar to the best clientele performance measure, 

the LOP measure gives zero performance to the passive portfolios by construction, and thus 

provide a performance evaluation that does not suffer from the benchmark choice problem. It has 

also been used by Dahlquist and Söderlind (1999), Farnsworth, Ferson, Jackson and Todd (2002), 

and Ahn, Cao and Chrétien (2009), among others.  

 The second part,    [  ], can be viewed as the maximum investor disagreement 

between the best clientele alpha and the LOP alpha. This disagreement can come from two 

distinct sources: the replication error   and the maximum Sharpe ratio restriction  ̅. With regard 

to the first source, if the passive portfolios span perfectly the mutual fund returns, so that    , 

then there can be no disagreement in evaluation. Otherwise, the larger is the replication error for 

a mutual fund (and particularly its volatility), so that the tougher it is for investors to get the same 

“kind” of opportunities from the passive portfolios, then the wider is the potential valuation 

disagreement among investors.  

 With regard to the second source, if the maximum Sharpe ratio allowed corresponds to the 

maximum Sharpe ratio attainable in the passive portfolios, so that  ̅     and  [ ̅ ]   [   ], 

then there can be no disagreement in evaluation as    . In this case, no opportunities better 

than the ones in the passive portfolios are deemed reasonable by the investors. Otherwise, the 

larger the additional opportunities allowed by a higher maximum Sharpe ratio, then the wider is 

the potential valuation disagreement among investors. 
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 Finally, it is also possible to develop a conditional best clientele performance evaluation 

by following the scaled payoffs strategy of Cochrane (1996) and Chen and Knez (1996), among 

others. Specifically, we form public information-managed payoffs, denoted   , by multiplying 

passive returns with lagged publicly-available information variables. Let    be the corresponding 

prices of these payoffs, obtained by multiplying the unit vector by the lagged publicly-available 

information variables. Then, a conditional best clientele alpha is obtained by replacing    in the 

previous solution by   
 , an augmented set of assets that include both    and   , and by 

replacing the unit vector   by   , which contains both   and   .   

3. Methodology  

3.1. Estimation 

The solution for the best clientele performance evaluation measure necessitates the estimation of 

     parameters for  ̅ ( ,  ,  ), along with the alpha ( ̅  ). These parameters can be 

estimated and tested for significance using the generalized method of the moments (GMM) of 

Hansen (1982). For a sample of   observations, we rely on the following      moments: 
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 The   moments in equation (1) allow the estimation of the LOP SDF   
        by 

ensuring that it prices correctly the   passive portfolio returns. The   moments in equation (2) 

represent the orthogonality conditions between the replication error term               and 

the passive portfolio returns that are needed to estimate the coefficients   in the best replicating 

payoff      . The moment in equation (3) imposes the no good-deal condition to estimate the 

parameter  , which is restricted to be positive in order to obtain an upper bound on performance. 

In this moment,    represents a risk-free rate equivalent and is simply set to one plus the average 

one-month Treasury bill return in our sample, which is 0.3393%. For consistency, we also 

include this one-month Treasury bill return as one of the passive portfolio returns, so that the 

estimated mean SDF corresponds to  
  

⁄ . Finally, using the estimated best clientele SDF 

     
     , we obtain the upper performance bound for a mutual fund using the moments 

specified by equation (4). 

For comparison with the best clientele alpha, we also examine the LOP performance 

measure of Chen and Knez (1996), which is based on the SDF with the lowest volatility. 

Specifically, the LOP alpha can be estimated with the following additional moment:  

 

 

 

 
∑[(     )    ]

 

   

           
(5) 

 

Our estimation system is just identified because the number of parameters equals the 

number of moments. Hence, the parameter estimates are not influenced by the choice of 

weighting matrix in GMM. Statistical significance for the parameters is assessed with standard 
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errors adjusted for conditional heteroskedasticity and serial correlation using the method of 

Newey and West (1987) with three lags.  

3.2. Maximum Sharpe Ratio Choice 

 To implement the best clientele performance measure, two choices are particularly 

important: the passive portfolios and the maximum Sharpe ratio. In the data section, we introduce 

three different sets of passive portfolios that allow assessing the sensitivity of the results to this 

choice. This section discusses the maximum Sharpe ratio choice, which we base on the existing 

literature.  

In general, the literature shows that researchers typically impose a subjective constraint 

on the maximum Sharpe ratio. One early contribution is Ross (1976). To study deviations from 

the arbitrage pricing theory, he imposes a maximum Sharpe ratio of twice the market Sharpe 

ratio, leading to a value of 0.25. Considering that the market portfolio should in theory have the 

highest Sharpe ratio according to the CAPM, he argues that adding the value of its ratio as 

additional opportunities should reasonably account for all attainable Sharpe ratios. With a related 

argument that high Sharpe ratios are unlikely from the perspective of risk-based models, 

MacKinlay (1995) considers that a squared annual Sharpe ratio higher than about 0.6 is 

implausibly high. 

In applying their no good-deal bounds to S&P500 option pricing, Cochrane and Saá-

Requejo (2000) select the maximum Sharpe ratio by ruling out opportunities having a Sharpe 

ratio greater than twice the one of the S&P500 (or equivalently, twice the Sharpe ratio of their 

basis asset). They explain that this choice is not definitive and that user can change it. Pyo (2011) 

uses the same assumption in his empirical studies, supposing a maximum Sharpe ratio equal to 

twice the one of the U.S. stock market index. Huang (2013) develops an upper bound on the 

predictive R-square using the no good-deal bound. He follows Ross (1976) and Cochrane and 
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Saá-Requejo (2000) and uses twice the market Sharpe ratio as maximum ratio. Floroiu and 

Pelsser (2013) price real options using no good-deal bounds and they also calibrate the bounds by 

using twice the Sharpe ratio of the S&P 500. 

A few papers consider different values of the maximum Sharpe ratio. Kanamura and 

Ohashi (2009) use values ranging from two to three times the value of the market Sharpe ratio to 

find the upper and lower bounds for summer day options. They find that the difference between 

the two bounds becomes larger as the Sharpe ratio increases. Martin (2013) provides upper 

bounds on risk aversion by using the no good-deal bounds. He calibrates his bounds by using 

three different values for the maximum annual Sharpe ratio, 0.75, 1 and 1.25.  

 Overall, while the maximum Sharpe ratio is somewhat subjectively specified, the literature 

offers some guidance on its choice. Namely, the most common choice is a maximum Sharpe ratio 

of twice the one of the underlying basis assets (which oftentimes include only an equity index). 

Put differently, this choice corresponds to adding the Sharpe ratio of the index to the maximum 

Sharpe ratio in the basis assets. In this paper, we follow this guidance by adding to the attainable 

Sharpe ratio of our passive portfolios a value of 0.1262, corresponding to the monthly Sharpe 

ratio of the market index (the CRSP value-weighted index) in our sample. We denote this choice 

by  ̅         . More conservatively, we also consider adding half of this value as 

additional allowable opportunities, so that  ̅            . While these are our two basic 

choices, we will also examine the effects on the results of other sensible maximum Sharpe ratio 

choices, like doubling directly the attainable Sharpe ratio of the passive portfolios.       

3.3. Cross-Sectional Performance Statistics 

To summarize our estimates of alphas for the mutual funds in our sample, we provide numerous 

cross-sectional statistics. First, we provide the mean, the standard deviation and selected 
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percentiles of the distributions of the estimated alphas and their corresponding t-statistics, 

computed as    ̂   ̂⁄ , where  ̂ is the estimated alpha and   ̂ is its Newey-West standard error. 

We also present t-statistics to test for the hypothesis that the cross-sectional mean of the 

estimated alphas is equal to zero. To perform this test, we assume that the cross-sectional 

distribution of the alphas is multivariate Normal with a mean of zero, a standard deviation equal 

to the observed cross-sectional standard deviation and a correlation between any two alphas of 

0.08. This last value matches the average correlation between fund residuals reported by Barras, 

Scaillet and Wermers (2010) when discussing the cross-sectional dependence in performance 

among funds in their sample (which is similar to ours).  

We finally compute proportions of estimated alphas that are positive, negative, 

significantly positive at the 2.5% level and significantly negative at the 2.5% level, and report p-

values on the significance of these proportions using the following likelihood ratio test proposed 

by Christoffersen (1998) based on a binomial distribution
1
:  

 

       [
(   

 
)
   

( 

 
)
 

(    )   (  ) 
]   ( )   

 

where   is the number of funds that respects a given criteria (i.e. being positive, negative, 

significantly positive or significantly negative),   is the total number of funds, 
 

 
 is the empirical 

proportion tested and    is the expected probability under the null.  

Furthermore, to control for mutual funds that exhibit significant alphas by luck or “false 

discoveries”, we apply the technique of Barras, Scaillet and Wermers (2010). Their idea consists 

                                                 
1A first test examines whether the proportions of positive or negative alphas are equal to 50%. A second test 

examines whether the proportions of significantly positive alphas or significantly negative alphas are equal to 2.5%. 
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of adjusting the proportions by counting the number of funds with t-statistics outside the 

thresholds implied by a significance level, denoted    and   , and then removing from the count 

funds that exhibit large estimated alphas by pure luck. The technique thus provides proportions 

adjusted for false discoveries:  

 

 ̂      ̂(    )   ̂ . 

 ̂      ̂(    )   ̂ . 

 

In these equations, the probabilities     ̂( ) refer to in-sample proportions. The estimated 

proportions of “false discoveries” are expressed as follow: 

 

 ̂   ̂       ̂ (    )  

 ̂   ̂       ̂ (    )  

with 

 ̂  
    ̂(       )

     ̂ (       )
  

 

where      ̂ ( ) is the null probability of false discoveries under an assumed standard normal 

distribution for t. Barras, Scaillet and Wermers (2010) show that such adjusted proportions 

reliably control for false discoveries. They also advocate values of         and        as 

efficient tresholds to classify adequately the entire population of mutual funds. We thus use their 
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technique to estimate the proportion of unskilled funds ( ̂ ), the proportion of skilled funds ( ̂ ) 

and the proportion of zero performance funds ( ̂ )
2
. 

4. Data 

4.1. Mutual Fund Returns 

 Our fund data consist of monthly returns on actively managed open-ended U.S. equity 

mutual funds from January 1984 to December 2012. Our data source is the CRSP Survivor-Bias 

Free Mutual Fund US database. Following Kacperczyk, Sialm and Zheng (2008), we exclude 

bond funds, balanced funds, money market funds, international funds and funds that are not 

strongly invested in common stocks to focus on U.S. equity funds. Specifically, U.S. equity funds 

are identified using the following four types of codes: policy codes, Strategic Insight objective 

codes, Weisenberger objective codes and Lipper objective codes
3
. The four types of codes are 

useful as each is only available for a part of our sample period. For example, the Lipper objective 

codes data start from December 1999.  

To focus on actively managed funds, we exclude index funds identified by the Lipper 

objective codes SP and SPSP, and by excluding funds with a name that includes the word 

"index". We also exclude mutual funds that are not open-ended by consulting the variable "open 

to investors" in the database. Finally, we keep the funds only if they hold, on average, between 

80% and 105% in common stocks. 

From this initial sample of funds, we make further sampling decisions to alleviate biases 

in the CRSP mutual funds database. Survivorship bias is one of the most well documented 

                                                 
2Although not explicitly acknowledged by Barras, Scaillet and Wermers (2010), the false discovery adjustment can 

lead to a negative proportion of unskilled or skilled funds when the unadjusted observed proportion is close to zero. 

In such instances, we follow Barras, Scaillet and Wermers (2010) by setting the adjusted proportion to zero and 

readjusted the proportion of zero performance funds so that the proportions sum to one.  
3As in Kacperczyk, Sialm and Zheng (2008), we identify U.S. equity funds by policy codes: CS; Strategic Insight 

objective codes: AGC, GMC, GRI, GRO, ING or SCG; Weisenberger objective codes: G, G-I, AGG, GCI, GRO, 

LTG, MCG or SCG and Lipper objective codes: EIEI, EMN, LCCE, LCGE, LCVE, MATC, MATD, MATH, 

MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, SCGE or SCVE. 
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problems in mutual funds data. It occurs when only surviving funds are sampled out of a 

population in which some funds enter and leave. Following Fama and French (2010), we select 

1984 as our starting year as the CRSP mutual fund database is free from this bias from then on. 

This starting year also eliminates a related selection bias in the early years of the database, as 

discussed by Elton, Gruber and Blake (2001) and Fama and French (2010).   

Back-fill and incubation biases are studied by Evans (2010). Back-fill bias arises 

because the database includes fund returns that are realized prior to the fund database entry. 

Incubation bias refers to a situation where only the funds that perform well in an incubation 

period are eventually open to the public and included in the database.  To deal with this bias, we 

follow Elton, Gruber and Blake (2001) and Kacperczyk, Sialm and Zheng (2008). We eliminate 

observations before the organization date of the funds, funds that do not report their organization 

date, and funds without a name, since they tend to correspond to incubated funds. We also 

exclude funds that have total net assets (TNA) inferior to $15 million in the first year of entering 

the database.  

As a last sampling choice, following Barras, Scaillet and Wermers (2010) and others, we 

consider a minimum fund returns requirement of 60 months. While this requirement introduces a 

weak survivorship bias, it is common in order to obtain reliable statistical estimates.  

Considering all the previous steps, we get a final sample of 2786 actively-managed 

open-ended U.S. equity mutual funds with returns for at least 60 months between 1984 and 2012.  

4.2. Passive Portfolio Returns 

The choice of basis assets imposes a trade-off between economic power (i.e. in theory, all assets 

available to mutual fund investors should be included,) and statistical power (i.e. econometric 

estimation imposes limitations on the number of assets). We select three different sets of basis 

assets to represent the passive opportunities available to investors. Our basis assets always 
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include the risk-free rate plus one of the three following sets: (1) ten industry portfolios, (2) six 

style portfolios and (3) the market portfolio. These assets have been used widely in the empirical 

asset pricing literature and the mutual fund performance evaluation literature to capture the cross-

section of stock returns. Classifications based on industry, style or market sensitivities are also 

common in practice to categorize equity investments for investors. The inclusion of the risk-free 

rate accounts for the cash positions in equity mutual funds and fixes the mean of the SDF to a 

relevant value (Dahlquist and Söderlind (1999)). By varying the number and type of assets 

included, we aim to examine the sensitivity of our results to these choices, in light of the 

aforementioned trade-off.   

The ten industry portfolios are used for our main results and the data are from Ken 

French’s website. They consist of consumer nondurables, consumer durables, manufacturing, 

energy, high technology, telecommunication, shops, healthcare, utilities, and other industries. The 

six style portfolios are also from Ken French’s website. The portfolios are constructed from two 

market equity capitalisation (size) sorts (big or small) and three book-to-market (value) sorts 

(low, medium or high). The market portfolio is the CRSP value-weighted index of 

NYSE/AMEX/NASDAQ stocks and the risk-free rate returns are taken from the CRSP database.  

4.3. Information Variables 

For conditional performance evaluation, we consider lagged values of four public information 

variables that are commonly used in the literature and were first introduced by Keim and 

Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988) and Fama and French (1989). 

We use: the dividend yield of the S&P500 Index (DIV) from the Datastream database, which is 

computed as the difference between the log of the twelve-month moving sum of dividends paid 

on the S&P500 and the log of its lagged value, the yield on the three-month U.S. Treasury bill 

(YLD) from the FRED database at the Federal Reserve Bank at St. Louis, the term spread 



23 

 

(TERM), which is the difference between the long-term yield on government bonds (from 

Datastream) and the yield on the three-month Treasury bills; the default spread (DEF), which is 

the difference between BAA- and AAA-rated corporate bond yields from the FRED database. 

With these lagged information variables, we construct four public information-managed 

payoffs by combining them with the market portfolio returns. We then add these four managed 

payoffs to each set of basis assets described previously to obtain the augmented sets   
  used for 

conditional performance evaluation.  

4.4. Summary Statistics 

Table 1 presents summary statistics for the monthly returns of our sample of actively-managed 

open-ended U.S. equity mutual funds (panel A), and for the monthly returns of the basis assets 

and the values of the information variables (panel B).  

 

[INSERT TABLE 1 AROUND HERE] 

 

In panel A, the monthly equity fund averages of returns (net of fees) have a mean of 

0.73% and standard deviation of 0.3% across funds. The averages of returns range from -4.83% 

to 2.09% while the standard deviations of returns range from 0.92% to 16.92%. The monthly 

Sharpe ratios vary between -0.4640 and 0.3787, with a mean of 0.0857 and a standard deviation 

of 0.0532.  

In panel B, the industry portfolios and style portfolios both have mean monthly returns 

around 1%. Industry portfolios have mean returns between 0.83% and 1.17%, and standard 

deviations between 3.99% and 7.22%. Style portfolios have monthly mean returns between 

0.80% and 1.22%, and standard deviations between 4.58% and 6.76%. The Sharpe ratios vary 

between 0.0698 and 0.1962 for the industry portfolios, and between 0.0685 and 0.1487 for the 
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style portfolios. Statistics for the market portfolio returns, the risk-free returns and the 

information variables are as expected.  

To illustrate the investment opportunities captured by the basis assets, figure 1 shows the 

efficient frontiers of returns from the set based on the industry portfolios (RF + 10I), the set based 

on the style portfolios (RF + 6S), and the set based on the market portfolio (RF + MKT). As 

expected, the market portfolio set provides less investment opportunities than the other sets.    

 

[INSERT FIGURE 1 AROUND HERE]        

 

5. Empirical Results 

5.1. Best Clientele Performance Results 

Table 2 presents our main empirical results. Using the risk-free rate and the ten industry 

portfolios as basis assets, it shows statistics on the cross-sectional distribution of SDF alphas 

estimated with two best clientele performance measures, allowing for maximum Sharpe ratios of 

 ̅             and  ̅         . Results for the LOP measure of Chen and Knez 

(1996) (denoted by   ) are also reported for comparison. Figure 2 illustrates these results by 

presenting histograms on the distributions of the LOP alphas and either the best clientele alphas 

for              (figure 2a) or the best clientele alphas for           (figure 2b). 

 

[INSERT TABLE 2 AROUND HERE] 

[INSERT FIGURE 2 AROUND HERE] 
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In panel A of table 2, we provide the mean, the standard deviation and selected 

percentiles of the distributions of the estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). We also report t-statistics on the 

significance of the cross-sectional mean of estimated alphas (see t-stat). As discussed in section 

3.3, the tests account for the cross-sectional dependence in performance among funds by 

assuming that the distribution of the alphas is multivariate Normal with a mean of zero, a 

standard deviation equal to the observed cross-sectional standard deviation and a correlation 

between any two alphas of 0.08. 

The cross-sectional distribution of SDF alphas from the best clientele performance 

measure with  ̅          has a mean of 0.4414% and a standard deviation of 0.4173%. 

When  ̅            , the mean and standard deviation decrease to 0.2327% and 0.3332%, 

respectively. Both means are statistically different from zero, with respective t-statistics of 2.46 

and 3.73. For comparison, the average alpha from the LOP measure of Chen and Knez (1996), 

which does not attempt to capture the potentially best clientele’s evaluation by ruling out investor 

disagreement (as    ), is -0.1789% (t-stat. = -2.33). This negative performance is similar to the 

empirical results typically found in the mutual fund performance literature, which also does not 

account for investor disagreement by focusing on a representative investor’s evaluation.  

As Ferson and Lin (2013), our results thus support an economically important 

divergence in performance evaluation between clienteles. For example, the magnitude of 

disagreement between the LOP alpha and the best clientele alpha with  ̅             is 

0.4116%. This value is comparable to the magnitude of investor disagreement documented by 

Ferson and Lin (2013), who obtain a value of 0.38% when they used index funds as passive 

portfolios. The divergence in alphas is well illustrated by the alpha distributions in figure 2.  
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The distribution of the cross-sectional distribution of the t-statistics in panel A of table 2 

confirms that the increased alpha values when more investment opportunities are allowed through 

a higher maximum Sharpe ratio result in more significantly positive alphas and less significantly 

negative alphas. Panel B studies this issue further. It gives the proportions of estimated alphas 

that are positive (  ̅    ), negative (  ̅    ), significantly positive (  ̅          ), 

and significantly negative (  ̅          ). We also provide proportions adjusted for false 

discoveries with the technique of Barras, Scaillet and Wermers (2010), namely the proportion  ̂  

of unskilled funds, the proportion  ̂  of skilled funds and the proportion  ̂  of zero performance 

funds. We finally present p-values for likelihood ratio tests (described in section 3.3) that the 

proportions of positive estimated alphas are equal to 50%, and that the proportions of 

significantly positive and significantly negative funds are equal to 2.5%.  

Panel B shows that the proportions of positive and significantly positive alphas increase 

when allowing for more disagreement, going from 20.32% to 91.46% for positive alphas and 

from 1.04% to 47.09% for significantly positive alphas. Accordingly, the proportions of negative 

and significantly negative alphas decrease when the maximum Sharpe ratio allowed increases, 

from 79.68% to 8.54% for negative alphas and from 29.54% to 0.47% for significantly negative 

alphas. The p-values confirm the significance of these results. Furthermore, the proportions of 

funds that are skilled from the point of view of their best clientele increase considerably with the 

maximum Sharpe ratio. Inversely, the proportion of funds that are unskilled from the point of 

view of their best clientele disappears once controlling for false discoveries. 

Again, accounting for investor disagreement and focusing on the potentially best 

clientele are keys to understanding the difference between our results and the existing literature 

on the value added by active management. For example, the findings from the LOP measure are 
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typical of the literature, with around 20% (80%) of the funds with positive (negative) values. 

Interestingly, increasing allowable opportunities by half the Sharpe ratio of the market index is 

sufficient to obtain approximately the opposite result. This is consistent with Ahn, Cao and 

Chrétien (2009) who argue that more than 80% of the mutual funds could be given a positive 

performance value by some investors.  

To gain more insights on the best clientele performance evaluation, figure 3 presents the 

best clientele and LOP alphas for decile portfolios of the 2786 mutual funds sorted in increasing 

order of their average return (figure 3a), in increasing order of their standard deviation of returns 

(figure 3b), and in increasing order of their Sharpe ratio (figure 3c). Figures 3a and 3c show that 

alphas are increasing with average returns and Sharpe ratios for the decile portfolios. Thus, not 

surprisingly, a fund with higher average return or higher Sharpe ratio is generally given a higher 

best clientele alpha. Figure 3b reveals that the best clientele alphas are also increasing with 

standard deviations of returns, especially for funds with high standard deviation, a relation not 

observed for the LOP alphas. While investor disagreement appears relatively stable across 

portfolios formed on average returns and Sharpe ratios, it is greatly increasing with the standard 

deviation of mutual fund returns. As passive portfolio returns have more difficulty replicating the 

returns of mutual funds with large volatility, so that these funds represent somewhat “unique” 

opportunities, it allows for large valuation disagreements for the potentially best clienteles.   

 

[INSERT FIGURE 3 AROUND HERE] 

 

Overall, we thus find that an increase in admissible investment opportunities equivalent 

to half the Sharpe ratio of the market index leads to generally positive performance for the best 

clientele. As stipulated by Chen and Knez (1996) and Ferson and Lin (2013), if the SDF alpha is 
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positive, then there exists some investor that would want to buy the fund. Our best clientele alpha 

results suggest that there is a clientele that would want to buy a majority of the mutual funds, 

consistent with the real-life continued investments in mutual funds.  

5.2. Conditional Performance Results 

Ferson and Schadt (1996) argue that accounting for the effect of public information results in 

improved performance measures. We implement a conditional version of our performance 

measure that considers a mutual fund’s best potential clientele in incomplete market with investor 

disagreement. To do so, we use the risk-free rate, the ten industry portfolios and the public 

information-managed payoffs to form an augmented set of basis assets for estimation purpose.  

 

[INSERT TABLE 3 AROUND HERE] 

 

Table 3 presents the cross-sectional performance statistics of the conditional version of 

the best clientele alphas. The table shows that our unconditional findings of the previous section 

extend to the conditional results. The inclusion of conditioning information does not alter our 

conclusion on the importance of investor disagreement and best clienteles.  

5.3. Sensitivity to Passive Portfolio Choice 

Tables 4 and 5 allow an examination of the sensitivity of the results to the choice of basis assets. 

They show unconditional performance results using the basis assets based on the six style 

portfolios (table 4) and the market portfolio (table 5). In the latter case, it is interesting to note the 

the LOP measure is equivalent to the CAPM measure as the SDF is linear in the market return, 

              .  

 

[INSERT TABLE 4 AROUND HERE] 



29 

 

[INSERT TABLE 5 AROUND HERE] 

 

The previous results are confirmed when using the basis assets based on the six style 

portfolios or the market portfolio. An increase in admissible investment opportunities equivalent 

to half the Sharpe ratio of the market index leads to generally positive best clientele performance 

values for both alternative sets of basis assets. For example, the SDF alphas estimated from the 

best clientele performance measure with  ̅             have a mean of 0.2862% (t-stat. = 

2.94) for the six style portfolios and 0.2650% (t-stat. = 3.09) for the market portfolio. These 

values are slightly greater than the mean of 0.2327% for the ten industry portfolios. This result 

along with a general comparison of the cross-sectional distributions of the alphas from the three 

sets suggest that the benchmarks implicit from the six style portfolios or the market portfolio 

appear to be slightly easier to “beat” on a risk-adjusted basis.  

As before, the means of the distributions of SDF alphas indicate an economically 

important divergence in performance evaluation between clienteles. For example, the magnitudes 

of disagreement between the LOP alphas of Chen and Knez (1996) and the best clientele alphas 

with  ̅             are comparable across different basis assets (i.e.,  0.4116% for the ten 

industry portfolios, 0.3701% for the six style portfolios and 0.3283% for the market). The higher 

disagreement found with the ten industry portfolios suggests that the fund returns are slightly less 

well spanned by this set than by the two other sets, or that the choice of maximum Sharpe ratio 

results in a higher disagreement parameter for this set than the two other sets. 

5.4. Alternative Maximum Sharpe Ratio Choices 

Table 6 presents the empirical results for other sensible choices of maximum Sharpe ratios using 

ten industry portfolios as basis assets. We provide the mean, the standard deviation and selected 



30 

 

percentiles of the distributions of the estimated alphas (six columns under Performance) and their 

corresponding t-statistics (six columns under t-statistics). As discussed earlier, several papers 

argue that calibrating the maximum Sharpe ratio constraint is a subjective choice. We consider 

three additional cases. 

 In the first case, we consider a maximum Sharpe ratio as a multiple of the attainable 

Sharpe ratio of the passive portfolios. This case is in line with the previously reviewed literature 

that uses twice the Sharpe ratio of their basis assets as choice. To perform this analysis, two 

maximum Sharpe ratios are taken:  ̅      or  ̅       . A problem with this case is that the in-

sample optimal basis asset Sharpe ratio    can be close to zero or unusually high, especially for 

mutual funds that have a limited time series. Taking a multiple of a potentially unrealistic    

might lead to an unrealistic maximum Sharpe ratio. In the second case, we thus add to    a 

multiple of the optimal basis asset Sharpe ratio. The maximum Sharpe ratios become  ̅     

      and  ̅       , where    represents the optimal Sharpe ratio of the basis assets in the 

full sample. In the third case, as the sample optimal Sharpe ratio is biased upward, we use an 

adjusted Sharpe ratio     following the bias correction proposed by Ferson and Siegel (2003)
4
. 

The maximum Sharpe ratios are then  ̅            and  ̅        . 

 

[INSERT TABLE 6 AROUND HERE] 

 

The empirical results in table 6 show that the SDF alphas estimated from the best 

clientele performance measure have means varying from 0.2944% (t-stat. = 2.92) for  ̅     

                                                 
4
As discussed by Ferson and Siegel (2003), the sample optimal Sharpe ratios are biased upward when the number of 

basis assets (K) is large relative to number of observations (T). We adjust the full-sample optimal Sharpe ratio of 

basis assets using their proposed correction:     √
(  )  (     )

 
 

 

 
. 
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       to 0.7924% (t-stat. = 4.72) for  ̅     . All maximum Sharpe ratios investigated lead to 

best clientele performance values that are generally positive and increasing with the importance 

of the additional opportunities allowed with the choice of  ̅. Average investor disagreements, 

which can be calculated from the difference between the mean alphas in table 6 and the mean 

LOP alpha in table 2 (for   ), continue to be economically important. For example, when the 

maximum Sharpe ratio is  ̅           , we obtain a disagreement between the best clientele 

measure and the no disagreement LOP measure of 0.4733%. Overall, these results show that the 

maximum Sharpe ratio of  ̅             investigated in previous tables is the most 

conservative choice as it adds less investment opportunities than the other sensible maximum 

Sharpe ratios considered. Appendix A confirms these findings for the sets of basis assets based 

on the six style portfolios and the market portfolio.  

5.5. Zero-Alpha Implied Maximum Sharpe Ratios 

Our analysis has thus far relied on an exogenous choice for the maximum Sharpe ratio. 

Previously, we show that although this choice is somewhat subjectively specified, the literature 

offers some guidance, providing a justification for our selections. Yet given the importance of 

this choice, this section investigates an alternative estimation strategy that does not require the 

selection of a maximum Sharpe ratio and leads to a measure of the allowable investment 

opportunities needed for the mutual funds to be fairly evaluated by their potentially best clientele.  

To understand this strategy, notice that the selection of  ̅ allows the estimation of the 

disagreement variable   in equation (3). Then,   is needed for the estimation of  ̅   with 

equation (4). In this section, we proceed reversely. Specifically, we set a value for alpha that 

implies that the best clientele gives zero value to a mutual fund,  ̅    . This choice leads to 

the estimation of the disagreement variable   with equation (4), which then allows for the 
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estimation of the maximum Sharpe ratio  ̅ with equation (3). We call the resulting estimated  ̅ 

the zero-alpha implied maximum Sharpe ratio. The difference between this value for a fund and 

the corresponding optimal basis asset Sharpe ratio for its sample,  ̅    , gives a measure of how 

much additional allowable opportunities are sufficient to find a potential clientele who gives a 

nonnegative value to a fund.  

Table 7 shows the cross-sectional distributions of the implied Sharpe ratios estimated 

when fixing the best clientele alpha at zero, the attainable optimal Sharpe ratios of the passive 

portfolios and the differences between both Sharpe ratios. For all three sets of basis assets, the 

average differences are small, so that only a small increase in admissible opportunities is needed 

to change the negative mean LOP alpha into zero mean best clientele alpha. For example, when 

considering the ten industry portfolios as basis assets, augmenting Sharpe ratio opportunities by 

only 0.0412 (about a third of the sample market Sharpe ratio) is sufficient for the evaluation to 

become nil on average. Even less additional opportunities are needed for the passive portfolios 

based on the six style portfolio (0.0296) and the market index (0.0335). 

 

[INSERT TABLE 7 AROUND HERE] 

 

The distributions show that mutual funds require different levels of investor disagreement 

to be valued fairly. For example, with the basis assets based on the ten industry portfolios, zero-

alpha implied Sharpe ratios vary between 0.1488 and 0.7507 and Sharpe ratio differences vary 

between 0.000 and 0.4596. Nevertheless, these findings suggest that our conclusion on the 

generally positive performance values for the mutual fund’s best potential clientele would hold 

unless an unreasonably low value for the maximum Sharpe ratio is selected.  
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6. Conclusion  

In this paper, we apply the no good-deal approach of Cochrane and Saá-Requejo (2000) to 

measure mutual fund performance from the point of view of the most favourable clientele. We 

use a large cross-section of actively managed open-ended U.S. equity mutual funds to provide the 

first comprehensive performance evaluation exercise from the point of view of each fund’s 

potentially most favourable clientele.  

Our empirical results suggest that the long-standing issue of actively managed mutual 

fund underperformance might be due to the implicit use of a unique representative investor in 

standard performance measures. Considering investor disagreement and focusing on the best 

clients result in mutual funds performing better, with the cross-sectional average of alphas 

increasing with additional admissible investment opportunities in incomplete market. These 

results are robust to the use of different basis assets and conditioning information, and to 

adjustments for false discoveries. Overall, they support the findings of Ahn, Cao and Chrétien 

(2009) and Ferson and Lin (2013) on the importance of heterogeneous preferences and investor 

disagreement in mutual fund evaluation.  
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Table 1: Summary Statistics 

Table 1 presents summary statistics for our monthly data from January 1984 to December 2012. 

Panel A shows cross-sectional summary statistics (average (Mean), standard deviation (StdDev) 

and selected percentiles) on the distributions of the average (Mean), standard deviation (StdDev), 

minimum (Min), maximum (Max) and Sharpe ratio (h) for the returns on 2786 actively managed 

open-ended U.S. equity mutual funds. Panel B gives the average (Mean), standard deviation 

(StdDev), minimum (Min), maximum (Max) and Sharpe ratio (h) for the passive portfolio returns 

and information variables. The passive portfolios include ten industry portfolios (consumer 

nondurables (NoDur), consumer durables (Dur), manufacturing (Manuf), energy (Enrgy), high 

technology (HiTec), telecommunication (Telcm), shops (Shops), healthcare (Hlth), utilities 

(Utils), and other industries (Other)), six Fama-French style portfolios based on two market 

equity capitalisation (size) sorts (big (B) or small (S)) and three book-to-market (value) sorts (low 

(L), medium (M) or high (H)), the market portfolio (MKT) based on the CRSP value-weighted 

index, and the risk free asset (RF) based on the one-month Treasury bill. The information 

variables are lagged values of the dividend yield on the S&P500 Index (DIV), the yield on the 

three-month Treasury bill (YLD), the term spread (TERM) and the default spread (DEF). All 

statistics are in percentage except for the Sharpe ratios.  

 

Panel A: Mutual Fund Returns 

  Mean StdDev Min Max h 

Mean 0.7338 5.3400 -19.9976 16.4080 0.0857 

StdDev 0.3008 1.5632 5.6560 7.8772 0.0532 

     

 

Max 2.0906 16.9206 -2.1401 101.6191 0.3787 

99% 1.3677 10.3594 -5.5453 41.5517 0.1990 

95% 1.1405 8.2353 -12.8253 32.5704 0.1593 

90% 1.0453 7.2002 -14.4430 27.0565 0.1427 

75% 0.9044 6.0719 -16.5652 18.5645 0.1178 

Median 0.7464 5.0272 -19.4020 14.1103 0.0900 

25% 0.5946 4.3865 -22.9302 11.4669 0.0613 

10% 0.4232 3.8968 -26.3190 9.9918 0.0229 

5% 0.2943 3.4811 -29.0886 9.0829 -0.0033 

1% -0.1139 1.6197 -36.9313 5.3715 -0.0827 

 Min -4.8327 0.9168 -86.9707 2.4218 -0.4640 
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Table 1: Summary Statistics (continued) 

Panel B: Passive Portfolio Returns and Information Variables 

 
Mean StdDev Min Max h 

Industry Portfolios 

NoDur 1.1713 4.3493 -21.0300 14.7400 0.1962 

Durbl 0.8311 7.0347 -32.8900 42.9200 0.0698 

Manuf 1.0667 5.1203 -27.3200 17.7800 0.1420 

Enrgy 1.1223 5.3691 -18.3900 19.1300 0.1459 

HiTec 0.9338 7.2260 -26.1500 20.4600 0.0822 

Telcm 0.9689 5.2612 -15.5600 22.1200 0.1199 

Shops 1.0394 5.0898 -28.3100 13.3800 0.1375 

Hlth 1.1140 4.7552 -20.4700 16.5400 0.1636 

Utils 0.9444 3.9952 -12.6500 11.7600 0.1521 

Other 0.8829 5.3165 -23.6800 16.1100 0.1024 

Style Portfolios, Market Portfolio and Risk-Free Asset 

B/L 0.9403 4.7004 -23.1900 14.4500 0.1281 

B/M 0.9705 4.5832 -20.3200 14.8500 0.1378 

B/H 0.9279 5.2367 -24.4700 22.1600 0.1126 

S/L 0.8037 6.7657 -32.3400 27.0200 0.0685 

S/M 1.1221 5.2548 -27.5700 18.8700 0.1487 

S/H 1.2282 6.2180 -28.0500 38.3900 0.1426 

      
MKT 0.9174 4.5814 -22.5363 12.8496 0.1262 

RF 0.3393 0.2166 0.0000 1.0000 - 

Information Variables 

DIV 2.4649 0.9204 1.0800 4.9900 - 

YLD 4.1264 2.6038 0.0100 10.4700 - 

TERM 1.9419 1.1392 -0.5300 3.7600 - 

DEF 1.0255 0.4046 0.5500 3.3800 - 
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Table 2: Best Clientele Alphas Using the RF + 10I Passive Portfolio Set 
Table 2 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two best 

clientele performance measures, allowing for maximum Sharpe ratios of            and         

(see definition in section 3.2), and for the LOP measure (denoted by   ), using the risk-free rate and the 

ten industry portfolios (RF + 10I) as basis assets. Panel A provides the mean, the standard deviation 

(StdDev) and selected percentiles of the distributions of the estimated alphas (columns under 

Performance) and their corresponding t-statistics (columns under t-statistics). It also reports t-statistics (t-

stat) on the significance of the mean of estimated alphas using a test that accounts for the cross-sectional 

dependence in performance among funds (see description in section 3.3). Panel B gives the proportions of 

estimated alphas that are positive (  ̅    ), negative (  ̅    ), significantly positive 

(  ̅          ), and significantly negative (  ̅          ). It also provides proportions adjusted 

for false discoveries (see description in section 3.3), namely the proportion of zero alpha, unskilled and 

skilled funds. It finally presents p-values (in parentheses) for likelihood ratio tests (described in section 

3.3) that the proportions of positive estimated alphas are equal to 50%, and that the proportions of 

significantly positive and significantly negative funds are equal to 2.5%. The data (see description in table 

1) cover the period January 1984-December 2012. All statistics are in percentage except t-statistics.  

 

Panel A: Performance and  -statistics of Individual Mutual Funds 

 
Performance 

 
 -statistics 

 
                      

 
                      

Mean -0.1789 0.2327 0.4414 
 

-1.2291 1.0067 1.8948 

StdDev 0.2707 0.3332 0.4173 
 

1.4743 1.4339 1.4011 

( -stat) (-2.3317) (2.4643) (3.7323) 
    

        

Max 0.6322 1.8723 2.6371 
 

3.8044 6.5340 7.4785 

99% 0.3580 1.2642 1.8322 
 

2.0211 4.4775 5.4440 

95% 0.1787 0.7800 1.1538 
 

1.0473 3.3425 4.2471 

90% 0.0967 0.6400 0.9722 
 

0.5435 2.7363 3.5796 

75% -0.0364 0.4195 0.6779 
 

-0.2258 1.9288 2.7555 

Median -0.1630 0.1814 0.3556 
 

-1.1398 1.0517 1.8852 

25% -0.2854 0.0205 0.1478 
 

-2.1715 0.1564 1.0578 

10% -0.4501 -0.1055 0.0170 
 

-3.1627 -0.8412 0.1501 

5% -0.5978 -0.1934 -0.0725 
 

-3.6814 -1.4442 -0.4675 

1% -0.9247 -0.4376 -0.2408 
 

-4.8763 -2.6243 -1.5068 

Min -5.5072 -3.1462 -2.0639 
 

-8.7615 -6.2206 -4.6528 

 

 
Panel B: Performance Proportions 

 

  
                      

Performance   ̅     20.32 (0.00) 78.07 (0.00) 91.46 (0.00) 

Sign   ̅     79.68 21.93 8.54 

Performance   ̅           1.04 (0.00) 23.87 (0.00) 47.09 (0.00) 

Significance   ̅           29.54 (0.00) 2.26 (41.22) 0.47 (0.00) 

Classifications Zero alpha 48.30 48.38 21.81 

Adjusted for Unskilled 51.70 0.00 0.00 

False Discoveries Skilled 0.00 51.62 78.19 
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Table 3: Conditional Best Clientele Alphas Using the RF + 10I + RZ Passive Portfolio Set 
Table 3 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two best 

clientele performance measures, allowing for maximum Sharpe ratios of            and         

(see definition in section 3.2), and for the LOP measure (denoted by   ), using the risk-free rate, the ten 

industry portfolios and the public information-managed payoffs (RF + 10I + RZ) as basis assets. Panel A 

provides the mean, the standard deviation (StdDev) and selected percentiles of the distributions of the 

estimated alphas (columns under Performance) and their corresponding t-statistics (columns under t-

statistics). It also reports t-statistics (t-stat) on the significance of the mean of estimated alphas using a test 

that accounts for the cross-sectional dependence in performance among funds (see description in section 

3.3). Panel B gives the proportions of estimated alphas that are positive (  ̅    ), negative (  ̅   
 ), significantly positive (  ̅          ), and significantly negative (  ̅          ). It also 

provides proportions adjusted for false discoveries (see description in section 3.3), namely the proportion 

of zero alpha, unskilled and skilled funds. It finally presents p-values (in parentheses) for likelihood ratio 

tests (described in section 3.3) that the proportions of positive estimated alphas are equal to 50%, and that 

the proportions of significantly positive and negative funds are equal to 2.5%. The data (see description in 

table 1) cover the period January 1984-December 2012. All statistics are in percentage except t-statistics.  

 

Panel A: Performance and T-statistics of Individual Mutual Funds 

 
Performance 

 
T-statistics 

 
                      

 
                      

Mean -0.1795 0.2298 0.4347 
 

-1.2283 1.0138 1.8980 

Std Dev 0.2684 0.3322 0.4145 
 

1.4582 1.4399 1.4186 

( -stat) (-2.3599) (2.4400) (3.7001) 
    

        

Max 0.6336 1.8905 2.6412 
 

3.7486 6.4917 7.4375 

99% 0.3637 1.2341 1.7043 
 

2.0194 4.4468 5.4256 

95% 0.1776 0.7733 1.1227 
 

1.0437 3.3427 4.2652 

90% 0.0930 0.6331 0.9584 
 

0.5195 2.7619 3.6294 

75% -0.0385 0.4152 0.6726 
 

-0.2333 1.9380 2.7706 

Median -0.1642 0.1813 0.3524 
 

-1.1368 1.0528 1.8940 

25% -0.2854 0.0199 0.1454 
 

-2.1637 0.1545 1.0447 

10% -0.4496 -0.1089 0.0140 
 

-3.1277 -0.8763 0.1234 

5% -0.5927 -0.1928 -0.0769 
 

-3.6879 -1.4396 -0.5121 

1% -0.9102 -0.4385 -0.2469 
 

-4.8902 -2.5426 -1.5287 

Min -5.5066 -3.5894 -2.7198 
 

-8.3928 -5.9284 -4.4862 

 

 
Panel B: Performance Proportions 

 

  
                      

Performance   ̅     19.81 (0.00) 77.93 (0.00) 91.03 (0.00) 

Sign   ̅     80.19  22.07 8.97 

Performance   ̅           1.01 (0.00) 24.23 (0.00) 47.67 (0.00) 

Significance   ̅           29.40 (0.00) 2.15 (23.05) 0.36 (0.00) 

Classifications Zero alpha 47.86 48.45 22.07 

Adjusted for Unskilled 52.14 0.00 0.00 

False Discoveries Skilled 0.00 51.55 77.93 
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Table 4: Best Clientele Alphas Using the RF + 6S Passive Portfolio Set 
Table 4 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two best 

clientele performance measures, allowing for maximum Sharpe ratios of            and         

(see definition in section 3.2), and for the LOP measure (denoted by   ), using the risk-free rate and the 

six style portfolios (RF + 6S) as basis assets. Panel A provides the mean, the standard deviation (StdDev) 

and selected percentiles of the distributions of the estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). It also reports t-statistics (t-stat) on the significance 

of the mean of estimated alphas using a test that accounts for the cross-sectional dependence in 

performance among funds (see description in section 3.3). Panel B gives the proportions of estimated 

alphas that are positive (  ̅    ), negative (  ̅    ), significantly positive (  ̅          ), 

and significantly negative (  ̅          ). It also provides proportions adjusted for false discoveries 

(see description in section 3.3), namely the proportion of zero alpha, unskilled and skilled funds. It finally 

presents p-values (in parentheses) for likelihood ratio tests (described in section 3.3) that the proportions 

of positive estimated alphas are equal to 50%, and that the proportions of significantly positive and 

significantly negative funds are equal to 2.5%. The data (see description in table 1) cover the period 

January 1984-December 2012. All statistics are in percentage except t-statistics. 

 

Panel A: Performance and  -statistics of Individual Mutual Funds 

 
Performance 

 
 -statistics 

 
                      

 
                      

Mean -0.0839 0.2862 0.4706 
 

-0.7286 1.5803 2.4612 

StdDev 0.2680 0.3437 0.4160 
 

1.5176 1.4566 1.4437 

( -stat) (-1.1044) (2.9374) (3.9911) 
    

        

Max 1.0492 2.3782 3.3233 
 

4.0599 6.6859 7.8838 

99% 0.5424 1.4120 1.9870 
 

2.7262 5.0187 6.0269 

95% 0.3215 0.8695 1.1591 
 

1.8065 3.9518 4.8682 

90% 0.2063 0.7023 0.9601 
 

1.2286 3.4588 4.3490 

75% 0.0364 0.4355 0.6485 
 

0.2899 2.5605 3.4162 

Median -0.0866 0.2152 0.3737 
 

-0.7565 1.5089 2.3984 

25% -0.2015 0.0813 0.2109 
 

-1.7059 0.6564 1.5210 

10% -0.3333 -0.0261 0.0939 
 

-2.6708 -0.1962 0.7080 

5% -0.4451 -0.1104 0.0194 
 

-3.2540 -0.8161 0.1489 

1% -0.7944 -0.3458 -0.1718 
 

-4.3803 -1.9112 -0.9276 

Min -5.5400 -3.2703 -2.2134 
 

-7.2184 -5.2881 -4.0278 

 

 
Panel B: Performance Proportions 

 

  
                      

Performance   ̅     31.19 (0.00) 87.62 (0.00) 95.84 (0.00) 

Sign   ̅     68.81 12.38 4.16 

Performance   ̅           3.73 (0.01) 38.62 (0.00) 63.17 (0.00) 

Significance   ̅           20.03 (0.00) 0.93 (0.00) 0.29 (0.00) 

Classifications Zero alpha 56.44 32.07 12.19 

Adjusted for Unskilled 39.53 0.00 0.00 

False Discoveries Skilled 4.03 67.93 87.81 
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Table 5: Best Clientele Alphas Using the RF + MKT Passive Portfolio Set 
Table 5 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two best 

clientele performance measures, allowing for maximum Sharpe ratios of            and         

(see definition in section 3.2), and for the LOP measure (denoted by   ), using the risk-free rate and the 

market portfolio (RF + MKT) as basis assets. Panel A provides the mean, the standard deviation (StdDev) 

and selected percentiles of the distributions of the estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). It also reports t-statistics (t-stat) on the significance 

of the mean of estimated alphas using a test that accounts for the cross-sectional dependence in 

performance among funds (see description in section 3.3). Panel B gives the proportions of estimated 

alphas that are positive (  ̅    ), negative (  ̅    ), significantly positive (  ̅          ), 

and significantly negative (  ̅          ). It also provides proportions adjusted for false discoveries 

(see description in section 3.3), namely the proportion of zero alpha, unskilled and skilled funds. It finally 

presents p-values (in parentheses) for likelihood ratio tests (described in section 3.3) that the proportions 

of positive estimated alphas are equal to 50%, and that the proportions of significantly positive and 

significantly negative funds are equal to 2.5%. The data (see description in table 1) cover the period 

January 1984-December 2012. All statistics are in percentage except t-statistics.  

   

Panel A: Performance and  -statistics of Individual Mutual Funds 

 
Performance 

 
 -statistics 

 
                      

 
                      

Mean -0.0683 0.2650 0.4669 
 

-0.3830 1.1588 1.8902 

StdDev 0.2747 0.3021 0.3643 
 

1.1960 1.1834 1.1832 

( -stat) (-0.8770) (3.0949) (4.5216) 
    

        

Max 0.8317 1.7586 2.4727 
 

3.8707 5.8038 6.5530 

99% 0.4663 1.0932 1.6397 
 

2.2969 3.9204 4.8390 

95% 0.2957 0.7488 1.0485 
 

1.4196 3.0261 3.8575 

90% 0.2171 0.6173 0.8953 
 

1.0338 2.5927 3.3893 

75% 0.0767 0.4369 0.6785 
 

0.4046 1.9226 2.6338 

Median -0.0515 0.2480 0.4339 
 

-0.3137 1.1965 1.8705 

25% -0.1845 0.0740 0.2117 
 

-1.1147 0.4390 1.1558 

10% -0.3458 -0.0425 0.0806 
 

-1.8898 -0.2548 0.5083 

5% -0.4818 -0.1477 -0.0027 
 

-2.4349 -0.8276 -0.0276 

1% -0.8637 -0.4154 -0.2719 
 

-3.7594 -2.0091 -1.1446 

Min -5.5151 -3.5756 -2.6251 
 

-5.7317 -4.3505 -2.5594 

 

 
Panel B: Performance Proportions 

 

  
                      

Performance   ̅     39.63 (0.00) 85.53 (0.00) 94.83 (0.00) 

Sign   ̅     60.37 14.47 5.17  

Performance   ̅           1.87 (2.50) 23.58 (0.00) 46.95 (0.00) 

Significance   ̅           9.37 (0.00) 1.11 (0.00) 0.22 (0.00) 

Classifications Zero alpha 82.53 41.50 14.99 

Adjusted for Unskilled 17.47 0.00 0.00 

False Discoveries Skilled 0.00 58.50 85.01 
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Table 6: Best Clientele Alphas for Alternative Maximum Sharpe Ratio Choices Using the RF + 10I Passive Portfolio Set 
Table 6 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with six best clientele performance measures, allowing 

for maximum Sharpe ratios of      ,    ,         ,      ,           and        (see definition in section 5.4), using the risk-free rate 

and the ten industry portfolios (RF + 10I) as basis assets. It provides the mean, the standard deviation (StdDev) and selected percentiles of the 

distributions of the estimated alphas (columns under Performance) and their corresponding t-statistics (columns under t-statistics). It also reports t-

statistics (t-stat) on the significance of the mean of estimated alphas using a test that accounts for the cross-sectional dependence in performance 

among funds (see description in section 3.3). The data (see description in table 1) cover the period January 1984-December 2012. All statistics are 

in percentage except t-statistics.  

 

Performance and  -statistics of Individual Mutual Funds 

 
Performance 

 
 -statistics 

 
                                          

 
                                          

Mean 0.4470 0.7924 0.4291 0.7653 0.2944 0.5408 
 

1.8992 2.9912 1.8475 2.9343 1.2885 2.2544 

StdDev 0.4187 0.5928 0.4118 0.5736 0.3559 0.4629 
 

1.3904 1.3829 1.4029 1.3969 1.4224 1.3935 

( -stat) (3.767) (4.716) (3.676) (4.708) (2.918) (4.122) 
       

              

Max 2.5955 4.0642 2.5875 4.0642 2.0885 3.0632 
 

7.4293 8.4645 7.4293 8.4645 6.8413 7.8374 

99% 1.8157 2.8743 1.7965 2.7621 1.4158 2.1153 
 

5.3752 6.5508 5.3915 6.5649 4.7813 5.8407 

95% 1.1627 1.8458 1.1277 1.7651 0.8909 1.3344 
 

4.2162 5.4591 4.1971 5.4185 3.6220 4.6805 

90% 0.9751 1.5478 0.9536 1.4949 0.7297 1.1338 
 

3.5910 4.7720 3.5271 4.7642 3.0196 3.9938 

75% 0.6799 1.1101 0.6634 1.0722 0.4957 0.7989 
 

2.7540 3.8087 2.7106 3.7921 2.1894 3.0884 

Median 0.3674 0.6577 0.3454 0.6404 0.2313 0.4436 
 

1.9043 2.9037 1.8437 2.8403 1.3193 2.2164 

25% 0.1504 0.3505 0.1404 0.3353 0.0576 0.2065 
 

1.0661 2.1143 1.0109 2.0385 0.4439 1.4055 

10% 0.0184 0.1929 0.0104 0.1886 -0.0696 0.0687 
 

0.1583 1.3561 0.0952 1.2518 -0.5294 0.5421 

5% -0.0594 0.1210 -0.0808 0.1165 -0.1558 -0.0055 
 

-0.4163 0.8092 -0.5177 0.7181 -1.1387 -0.0418 

1% -0.2580 -0.0343 -0.2524 -0.0201 -0.3901 -0.1551 
 

-1.4775 -0.1965 -1.5631 -0.1087 -2.2620 -0.9930 

Min -1.2139 -0.3974 -2.1284 -0.4196 -2.8250 -1.5544 
 

-4.5998 -2.2393 -4.7455 -2.4432 -5.7557 -3.9321 
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Table 7: Zero-Alpha Implied Maximum Sharpe Ratios 
Table 7 shows statistics on the cross-sectional distribution of monthly Maximum Sharpe ratios implied when fixing the best clientele alpha at zero 

(denoted by  ̅    ), the attainable monthly optimal Sharpe ratios of the passive portfolios (denoted by Basis Assets), and the differences 

between both Sharpe ratios (denoted by Difference), using the risk-free rate and either the ten industry portfolios, the six style portfolios or the 

market portfolio as basis assets. It provides the mean, the standard deviation (StdDev) and selected percentiles of the distributions of the values. 

The data (see description in table 1) cover the period January 1984-December 2012.  

 

Sharpe Ratios 

 
Ten Industry Portfolios 

 
Six Style Portfolios 

 
MKT 

 
 ̅     Basis Assets Difference 

 
 ̅     Basis Assets Difference 

 
 ̅     Basis Assets Difference 

Mean 0.2983 0.2571 0.0412 
 

0.3087 0.2790 0.0296 
 

0.1480 0.1146 0.0335 

StdDev 0.0718 0.0408 0.0576 
 

0.0556 0.0275 0.0449 
 

0.0588 0.0383 0.0485 

            
Max 0.7507 0.5453 0.4596 

 
0.7093 0.5962 0.4188 

 
0.6025 0.3500 0.3736 

99% 0.5746 0.4628 0.2591 
 

0.5384 0.3643 0.2186 
 

0.3510 0.2713 0.2549 

95% 0.4527 0.3002 0.1622 
 

0.4119 0.3267 0.1135 
 

0.2648 0.1626 0.1305 

90% 0.3868 0.2838 0.1136 
 

0.3676 0.3103 0.0763 
 

0.2158 0.1484 0.0869 

75% 0.3169 0.2692 0.0538 
 

0.3223 0.2847 0.0373 
 

0.1665 0.1270 0.0428 

Median 0.2765 0.2528 0.0182 
 

0.2924 0.2761 0.0134 
 

0.1334 0.1171 0.0150 

25% 0.2539 0.2364 0.0038 
 

0.2777 0.2677 0.0033 
 

0.1170 0.0965 0.0034 

10% 0.2397 0.2214 0.0006 
 

0.2674 0.2515 0.0005 
 

0.0944 0.0700 0.0006 

5% 0.2293 0.2147 0.0002 
 

0.2540 0.2367 0.0001 
 

0.0788 0.0593 0.0001 

1% 0.2135 0.1895 0.0000 
 

0.2356 0.2276 0.0000 
 

0.0522 0.0100 0.0000 

Min 0.1488 0.1433 0.0000 
 

0.2183 0.2068 0.0000 
 

0.0066 0.0012 0.0000 
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Appendix A: Additional Results on Alternative Maximum Sharpe Ratio Choices 

 

Table A1: Best Clientele Alphas for Alternative Maximum Sharpe Ratio Choices Using the RF + 6S Passive Portfolio Set 
Table A1 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with six best clientele performance measures, 

allowing for maximum Sharpe ratios of      ,    ,         ,      ,           and        (see definition in section 5.4), using the risk-

free rate and the six style portfolios (RF + 6S) as basis assets. It provides the mean, the standard deviation (StdDev) and selected percentiles of the 

distributions of the estimated alphas (columns under Performance) and their corresponding t-statistics (columns under t-statistics). It also reports t-

statistics (t-stat) on the significance of the mean of estimated alphas using a test that accounts for the cross-sectional dependence in performance 

among funds (see description in section 3.3). The data (see description in table 1) cover the period January 1984-December 2012. All statistics are 

in percentage except t-statistics. 

 

Performance and t-statistics of Individual Mutual Funds 

 
Performance 

 
T-statistics 

 
                                          

 
                                          

Mean 0.5052 0.8323 0.5015 0.8261 0.4441 0.7286 
 

2.5983 3.6655 2.5896 3.6564 2.3469 3.3845 

StdDev 0.4282 0.5819 0.4293 0.5810 0.4048 0.5336 
 

1.4314 1.4605 1.4439 1.4731 1.4441 1.4605 

( -stat) (4.163) (5.046) (4.122) (5.017) (3.870) (4.818) 
       

              

Max 3.3586 5.1028 3.4822 5.1584 3.1873 4.6537 
 

8.0564 9.3876 8.0564 9.3876 7.7290 9.0726 

99% 2.0487 3.0433 2.0613 2.9721 1.9252 2.6720 
 

6.1868 7.4125 6.1717 7.3722 5.8978 7.0302 

95% 1.2569 1.8182 1.2244 1.7971 1.1244 1.6183 
 

5.0026 6.1283 4.9949 6.1416 4.7395 5.7971 

90% 1.0045 1.4760 1.0059 1.4710 0.9197 1.3299 
 

4.4807 5.5964 4.4834 5.6031 4.2265 5.3140 

75% 0.6869 1.0641 0.6852 1.0535 0.6182 0.9435 
 

3.5124 4.5654 3.5404 4.5659 3.3080 4.3176 

Median 0.4060 0.6924 0.4012 0.6892 0.3511 0.6021 
 

2.5324 3.6028 2.5288 3.5963 2.2839 3.3384 

25% 0.2358 0.4580 0.2315 0.4536 0.1919 0.3891 
 

1.6543 2.6662 1.6421 2.6354 1.4200 2.3874 

10% 0.1146 0.3094 0.1123 0.3028 0.0792 0.2476 
 

0.8436 1.8477 0.8226 1.8309 0.5980 1.5906 

5% 0.0496 0.2355 0.0383 0.2291 0.0039 0.1739 
 

0.3072 1.4173 0.3001 1.3432 0.0228 1.1036 

1% -0.1155 0.0956 -0.1464 0.0641 -0.1936 0.0147 
 

-0.7123 0.5586 -0.7630 0.4189 -1.0708 0.1167 

Min -1.7755 -0.3027 -2.0357 -0.3890 -2.3656 -0.7319 
 

-4.2285 -2.2839 -3.8108 -1.6470 -4.2132 -2.2599 
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Table A2: Best Clientele Alphas for Alternative Maximum Sharpe Ratio Choices Using the 

RF + MKT Passive Portfolio Set 
Table A2 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two 

best clientele performance measures, allowing for maximum Sharpe ratios of       and     (see 

definition in section 5.4), using the risk-free rate and the market portfolio (RF + MKT) as basis assets. It 

provides the mean, the standard deviation (StdDev) and selected percentiles of the distributions of the 

estimated alphas (columns under Performance) and their corresponding t-statistics (columns under t-

statistics). It also reports t-statistics (t-stat) on the significance of the mean of estimated alphas using a test 

that accounts for the cross-sectional dependence in performance among funds (see description in section 

3.3). The data (see description in table 1) cover the period January 1984-December 2012. All statistics are 

in percentage except t-statistics. 

 

Performance and  -statistics of Individual Mutual Funds 

 
Performance 

 
 -statistics 

 
          

 
          

Mean 0.2444 0.4317 
 

1.0863 1.7768 

StdDev 0.3041 0.3750 
 

1.2153 1.2575 

( -stat) (2.835) (4.062) 
   

      

Max 1.9137 2.9479 
 

5.8772 6.6439 

99% 1.1193 1.6253 
 

3.9233 4.8328 

95% 0.7190 1.0164 
 

2.9936 3.8091 

90% 0.5922 0.8684 
 

2.5507 3.3670 

75% 0.4146 0.6332 
 

1.8655 2.5770 

Median 0.2234 0.3972 
 

1.1145 1.7632 

25% 0.0561 0.1813 
 

0.3410 1.0069 

10% -0.0674 0.0477 
 

-0.3672 0.2550 

5% -0.1686 -0.0554 
 

-0.9204 -0.3227 

1% -0.4904 -0.3862 
 

-2.2712 -1.6296 

Min -3.0077 -1.6592 
 

-3.8140 -3.3445 
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Figure 1: Mean-Standard Deviation Frontiers from the Sets of Passive Portfolio Returns 

 

Notes: Figure 1 presents the mean-standard deviation frontiers of investment opportunities from the risk-

free rate and either the ten industry portfolios (RF+10I), the six style portfolios (RF+6S) or the market 

portfolio (RF+MKT) as passive portfolios.  
 

 

 

 

  

-0,80%

-0,60%

-0,40%

-0,20%

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

0,00% 1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00%

RF+10I RF+6S RF+MKT



48 

 

Figure 2: Histogram of the Best Cliente and LOP Alphas 

 

(a) 

 
(b) 

 
 

Notes: Figure 2 presents histograms illustrating the distributions of the best clientele and LOP alphas. 

Figure 2a illustrates the LOP alphas (denoted   ) and the best clientele alpha allowing for a maximum 

Sharpe ratio of           . Figure 2b illustrates the LOP alphas (denoted   ) and the best clientele 

alpha allowing for a maximum Sharpe ratio of        . 
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Figure 3: Best Clientele and LOP Alphas for Decile Fund Portfolios 

 

(a) 

 
(b) 

 
(c) 

 
 

Notes: Figure 3 presents the best clientele and LOP alphas for mutual funds grouped in decile portfolios. 

In figure 3a, the funds are sorted in increasing order of their average return. In figure 3b, the funds are 

sorted in increasing order of their standard deviation of returns. In figure 3c, the funds are sorted in 

increasing order of their Sharpe ratio.  
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